
 
 

184 

Lecture 29 

When we solve the Schrödinger equation for the hydrogen molecule using these means we 

get a number of different potential energy curves, which we refer to as the electronic states of 

the molecule.  In analogy to the case for atomic electronic states, we identify these states using 

molecular term symbols.  The means for determining these molecular term symbols is somewhat 

more complicated than that for atomic term symbols, so we will limit ourselves to a description of 

the term symbol.  The term tells us the values of certain angular momenta just as before.  In 

this case the angular momenta are the spin angular momentum, S, and the component of the 

orbital angular momentum L in the direction of the bond axis, the axial component.  The 

axial component is given the symbol Λ.  We calculate Λ by adding up the axial components of 

the angular momentum for each one electron orbital and taking their absolute value, i.e.,  

 Λ = λ1 + λ2 + λ3+ ...  

where λ1, λ2 and so on are the axial components of the orbital angular momentum of each electron.  

An electron in a σ orbital has λ = 0, while an electron in a π orbital has λ = ±1.  When Λ = 0 we 

call the state a Σ state, when Λ = 1 we call it a Π state, when Λ = 2 we call it a ∆ state and so on.  

The most basic form of the term symbol is 2 1S+ Λ .   

For the ground state of the hydrogen molecule, all the angular momenta cancel to yield S 

= 0 and Λ = 0.  Thus the ground state of hydrogen is a 1Σ state.  As before, when molecules have 

inversion symmetry, this state can also be labeled as g or u.  We determine whether a molecular 

electronic state is g or u by first finding the parity (g or u) of the orbitals that each of the 

electrons are in, and multiplying according to the rules g x g = u x u = g and g x u = u.  Thus 

if we had a configuration where two electrons were both in 1sσg orbitals, the overall parity would 
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be g x g = g.  If on the other hand one electron was in a 1sσg orbital and the other in a 1sσu orbital 

the parity of the molecule would be g x u = u.  Thus the ground state for H2 is 1Σg. 

Let’s look at the molecular electronic configurations of several first row homonuclear 

diatomic molecules.  The easiest way to do this is to write our energy level diagrams, and on each 

side, where we have the original atomic orbitals, put the number of electrons in each atom.  These 

will be the electrons that we use to fill our 

molecular orbitals.  Let’s start with the molecule 

He2
+.  He2

+ has three electrons.  The first two go 

into our lowest energy orbital, the 1sσg bonding 

orbital, while the third electron goes into our next 

orbital, the 1sσu antibonding orbital.  The 

molecule will have some stability if the number of electrons in bonding orbitals outnumbers 

the number of electrons in antibonding orbitals.  In this case we have two electrons in bonding 

orbitals and one in an antibonding orbital, so a bond forms.  To characterize the strength of the 

bond we define a new term called the bond order.  In molecular orbital theory, the bond order 

is defined as one half (the number of bonding electrons - the number of antibonding 

electrons).  Thus if we have one net bonding electron, we have a bond order of ½. If we have two 

we have a bond order of one, which you usually refer to as a single bond. If we have four bonding 

electrons we have a bond order of two or a double bond and so on.  Thus for He2
+, our bond order 

is (2-1)/2 = 1/2.  Any time our bond order is greater than zero a stable ground state molecule will 

form, although in the case of He2
+, the bond is weak, with a De = 2.5 eV.  Because the molecule 

has a single unpaired electron, it will be a doublet, and because all of the electrons are in σ orbitals, 
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it will be a Σ state.  To determine the parity, we take the product of the parities of the three 

electrons, g x g x u = u.  So our molecular term symbol for the ground state of He2
+ is 2Σu. 

For He2, we have four electrons 

available for bonding, two from each He.  

The first two go into our lowest orbital, the 

1sσg bonding orbital, and the other two go 

into our 1sσu antibonding orbital.  The 

number of bonding electrons is equal to the 

number of antibonding electrons so the bond order is zero and no bond forms.  The He2 molecule 

is not stable in the ground state, although it can be observed if one of its electrons is in an excited 

state.  You can see how this works, because the next available orbital will be a 2sσg bonding 

orbital, so the HOMO-LUMO transition takes an electron from an antibonding orbital to a bonding 

orbital, increasing the bond order to 3 1
2

bonding antibonding−  for a bond order of one.  A species 

which is stable only in the excited state is called an excimer or an exciplex.  They are called 

excimers (a shortened version of EXCIted state diMER) when both of the species held together 

are the same, and exciplexes (short for EXCIted state comPLEXES) when the two species are 

different. Excimers are the lasing medium for some of our most powerful lasers, in particular the 

type of laser most typically used for Lasik eye surgery, called a (wait for it) Excimer Laser. 
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Next, we consider the bonding of Li2, and Be2.   Lithium has 3 electrons, so we must place 

6 electrons in our molecular orbitals.  The first four go to fill the 1sσ bonding and antibonding 

orbitals, and the final two go into the 2sσg bonding molecular orbital.  There are four bonding 

electrons and 2 antibonding electrons, so the bond order is (4-2)/2 = 1.  The bonding energy of Li2 

is only 1.14 eV however.  LET’S THINK ABOUT WHY THIS MIGHT BE THE CASE. Since 

all the electrons are paired this will be a singlet state.  As in the case of He2+, all the electrons are 

in σ orbitals, so the molecule will be in a Σ state.  Finally, the parity will be g, so the molecular 

term symbol for Li2 is 1Σg.   

For Be2, we have 8 electrons to put in our molecular orbitals.  The first six go in the same 

orbitals as Li2, 1sσg, 1sσu and 2sσg.  The final two go in the next highest orbital, the antibonding 

2sσu orbital.  Thus for Be2 we have four bonding electrons and 4 antibonding electrons for a bond 

order of 0, and no bond forms.  LET’S LOOK AT THE EFFECT OF CREATING A CATION OF 

BE2, AN ANION, AND A HOMO-LUMO EXCITED STATE ON THE BOND ORDER OF BE2. 
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Next we turn to B2 and C2.  Since both of these will clearly have filled 1sσ orbitals, we will 

exclude the 1sσ orbitals from our diagrams.  For B2 we have 10 electrons.  Four are taken up by 

the 1sσg and 1sσu orbitals.  Four more are taken up by the 2sσg and 2sσu orbitals.  The remaining 

two will have to go into molecular orbitals made up from the 2p atomic orbitals.  The next energy 

level consists of two degenerate 2pπu bonding orbitals.  According to Hund's rule we put one 

electron in each of the two orbitals with the spins aligned in the same direction.  Thus B2 has a 

bond order of 1, since there are six bonding and four antibonding electrons, and the De is 3.0 eV.  

Since the two electrons have spins aligned in the same direction we have a triplet state, and the 

molecular term symbol is 3Σg.  C2 has two more electrons than B2, and fills the 2pπu bonding 

orbitals.  The bond order is two since there are 8 bonding and 4 antibonding electrons.  The bond 

energy is approximately twice that of the single bonded B2 at 6.36 eV. The molecular term symbol 

is 1Σg.  N2 has two more valence electrons than C2.  Since both the 2pπu orbitals are  
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filled, we move up to the next level, the 2pσg bonding orbital, and put both electrons in this level.  

Thus nitrogen has 10 bonding electrons and 4 antibonding electrons, and is triple bonded.  The 

bond energy is a little less than three times that of boron, and is 8.86 eV.   To do the structure of 

O2, we need to change to the energy level order for Z ≥ 8.  The first eight electrons go into the 1sσ 

and 2sσ orbitals and result in a bond order of 0.  Next we fill the 2pσg, and both the 2pπu bonding 

orbitals.  The next level is the doubly degenerate 2pπg antibonding level.  Since there are two 

degenerate levels, each gets one electron with the spins aligned.  The bond order of oxygen is 2, 

since there are 10 bonding and six antibonding electrons, and the bond energy is 6.77 eV.  An 

important observation is that this ground state is a triplet, with term symbol 3Σ.  This implies that 

oxygen is a paramagnetic molecule in its ground state.  The explanation of oxygen's triplet ground 

state was one of the early triumphs of the molecular orbital theory. 

How do we use molecular orbitals to treat the bonding of heteronuclear diatomic 

molecules?  The general idea is the same as that for the homonuclear diatomic molecules - we 

create molecular orbitals by taking linear combinations of atomic orbitals on the two atoms.  The 

linear combinations will result in one bonding and one antibonding orbital for each pair of atomic 

orbitals.  The only question is which orbitals will combine?  The answer can be obtained by 

looking at which orbitals combine in homonuclear diatomic molecules.  For example, a 1s orbital 

combines with a 1s orbital, a 2s orbital combines with a 2s orbital, and a 2p orbital combines with 
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a 2p orbital.  The observation is that the orbitals that combine are the ones that are closest in 

energy.  In fact this is exactly what we will find for the heteronuclear diatomic molecules.  The 

orbitals that combine will be those that are closest in energy.  The closer in energy they are the 

stronger the stabilization of the bonding orbitals will be, and the stronger the bond. 

A logical question to ask is how we can tell which orbitals on different atoms are closest 

in energy.  We can use spectroscopic methods to probe this, but the best tool is our old friend, 

photoelectron spectroscopy.  It turns out that photoelectron spectroscopy can be applied to atoms 

and molecules as well as metal surfaces.  In the case of atoms, the photoelectron equation can be 

written as 21
2nh mvν = Φ + , where replacingΦ  by nΦ  indicates that for an atom, there are several 

different work functions.  For an atom these work functions are the binding energies of the 

occupied atomic orbitals.  The experiment involves using a tuned laser to determine the photon 

frequencies at which electrons are ejected with zero kinetic energy.  These frequencies can be used 

to determine the various binding energies.  For the purposes of molecular orbital theory, the 

orbitals which overlap most strongly will be the ones for which the experimentally determined 

binding energies are the closest. 

For example, in HF, the H 1s orbital is closest in energy to the F 2p orbital.  Thus the orbital 

diagram is as follows.  The lowest energy orbital is the F 1s, followed by the F 2s.  Next are the F 

2p and H 1s, which are approximately equal in energy.  The H 1s and the F 2pz (remember that by 

definition the bond axis is the z axis) combine to form a bonding and an antibonding orbital.  The 

F 2px and 2py orbitals are unaffected.  All of the unaffected orbitals, the F 1s, 2s, 2px and 2py 

orbitals, are called nonbonding orbitals.  Thus, in heteronuclear molecules there will be three 

types of molecular orbitals an electron can reside in:  bonding orbitals, nonbonding orbitals and 
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antibonding orbitals.  Bonding orbitals will have lower energies than the atomic orbitals they were 

formed from.  Nonbonding orbitals are unchanged atomic orbitals, and therefore have no energy 

change.  Antibonding orbitals will have 

higher energies than the atomic orbitals they 

were formed from.   

As before we fill the orbitals from 

lowest energy to highest.  The bond order for 

these molecules will still be one half the 

difference between the number of bonding 

electrons and antibonding electrons.  The 

nonbonding electrons do not contribute to the 

bond order.  For the case of HF we have ten 

electrons.  Two go into the F 1s nonbonding orbital, two go into the F 2s nonbonding orbital, the 

next two into the σg bonding orbital and the final four in the F 2px and F 2py nonbonding orbitals.  

Thus for HF we have 8 nonbonding electrons and 2 bonding electrons for a bond order of 1. 

For polyatomic molecules, we can follow the same general procedure, but it gets very 

complicated very rapidly.  When we calculate the potential energy function for H2 or HF, we have 

only one nuclear coordinate to worry about, the distance between the two nuclei, so the Born-

Oppenheimer approximation is relatively easy to apply.  However, when we consider even a small 

polyatomic molecule like vinyl iodide, C2H3I, the number of variables we have to adjust is much 

larger.  To apply the Born-Oppenheimer approximation to this molecule, we need to fix 9 nuclear 

coordinates, five of which are bond lengths, and four of which are bond angles.  This is not 
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impossible, but requires a significant amount of computer time at any level of theory above the HF 

level.  In general, for all but the largest molecules (think nucleic acids or proteins), these 

calculations can be carried out to sufficient accuracy to determine the geometries and 

thermodynamics of the molecules to good accuracy.  It is now, because of advances in computer 

technology and in the algorithms used in computational chemistry, also possible for calculations 

to be sufficiently accurate to provide useful predictive information about chemical kinetics.  These 

calculations have to be at a higher level because an error even as low as ±1 kJ/mol can result in a 

significant error in rate constants.  It also used to be the case that it was difficult to calculate 

vibrational frequencies accurately and quickly, but an application of computational quantum 

mechanics called Density Functional Theory gives good results (within 3%) for vibrational 

frequencies.  In the case of these DFT calculations, the biggest error does not lie in the calculation 

of the potential from which the vibrational frequencies are generated, but rather in the assumption 

that the potential for these frequency calculations is harmonic.  Recently Gerber et al have 

developed codes that allow anharmonic vibrational frequencies to be calculated from quantum 

chemical calculations, and combining this development with DFT can reduce the errors to the 

order of 0.1%. 
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Lecture 30 

There is another model of chemical bonding, called the valence bond or Heitler-London 

model, which in its crudest forms is inferior to molecular orbital theory, but nonetheless easily 

gives qualitative insight into the bonding of a huge number of polyatomic molecules.  The valence 

bond model assumes that a bond forms when there is a significant overlap between two 

atomic valence orbitals.  For example, when we bring two hydrogen atoms together, the bond 

forms because the two hydrogen 1s orbitals physically overlap and electron density is increased 

between the two atoms to create a bond.  For hydrogen this probably doesn't seem all that different 

than the molecular orbital model, except that in the valence bond model we haven’t talked about 

antibonding orbitals, just bonding orbitals.  The most important difference would be for a molecule 

like Li2.  The valence bond model would say that the single bond forms due only to the interaction 

between the valence 2s electrons, and that the four core 1s electrons are unchanged, and therefore 

are non-bonding.  This is incorrect and is shown to be so by photoelectron spectroscopy.  

Photoelectron spectra show that atomic core orbitals are changed by the formation of molecules, 

just as the valence orbitals are and therefore confirm the molecular orbital picture. 

Nonetheless, the valence bond model does a good job of predicting molecular geometries 

and bond orders, is easier to apply to qualitative treatments of larger molecules and tends to give 

better results when predicting properties of molecules near the dissociation limit, when interaction 

between core orbitals is naturally minimized.  It is especially useful when it is combined with the 

idea of hybrid orbitals.  Hybrid orbitals are linear combinations of atomic orbitals from a 

single atom to make new atomic orbitals of a different symmetry, which then combine with 

either unhybridized orbitals or hybrid orbitals on other atoms to make bonds.  The hybrid orbitals 

on an atom, as you know from general chemistry, have fixed angles relative to each other.  They 
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arise physically because the approach of nuclei to each other in the course of forming a molecule 

changes the symmetry of the interatomic potential, and therefore the Hamiltonian.  Therefore, new 

atomic orbitals with reduced symmetry are formed.  It is a convenient feature of these ‘hybrid” 

orbitals that their angular distributions can be described as simple linear combinations of hydrogen 

angular functions.  The physical origin of these hybrid orbitals lies in the fact that molecules, unlike 

atoms, don’t have a spherically symmetric potential energy function.  The hydrogenic orbitals are 

based on the surface of a sphere because the potential is symmetric.  Similarly molecules will have 

valence orbitals whose shapes mirror the symmetry of the potential, which in turn mirrors the 

symmetry of the molecular geometry. 

We'll illustrate the use of these orbitals by showing how they are applied to BeH2, BH3, 

CH4, NH3, and H2O.  BeH2 is a linear molecule, with an angle of 180° between BeH bonds.  The 

ground state electron configuration of Be is 1s2 2s2.  The first problem that we have to deal with is 

that in a 2s2 configuration Be has a filled valence subshell.  Since the valence bond model most 

typically describes a bond as being either due to the overlap between two half-filled valence 

orbitals or due to the overlap between a filled and an unfilled valence orbital, this configuration 

doesn't allow Be to bond with hydrogen.  However, if we promote one of the 2s electrons to a 2p 

orbital, we now have two half-filled orbitals with which to make BeH bonds.  It is true that it takes 

energy to promote this electron, but the energy invested is more than returned when the two BeH 

bonds are formed.  However, this is still not quite right.  The first problem is that if we make one 

bond between a hydrogen 1s orbital and a Be 2s orbital, and one bond between a hydrogen 1s 

orbital and a Be 2p orbital, the electron densities of the bonds will be different, and the bonds will 

have different bond energies, bond lengths and dipole moments.  Experiment shows that the two 
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bonds are completely identical.  The second problem is that making one bond with a Be 2s orbital 

and the other with a Be 2p orbital doesn't yield a linear geometry, the experimental geometry of 

BeH2. 

We can resolve this problem if we make two orbitals by taking the linear combination 

of the Be 2s and 2p orbitals.  We call these new orbitals sp orbitals and they are given by 

ψ sp i x= 1
2

(2s+ 2p )( )  

and  ψ sp ii x= 1
2

(2s - 2p )( ) . 

The resulting orbitals are identical in every way except that they are oriented in opposite 

directions.  They look essentially like p orbitals with one lobe enlarged and the other shrunk.  Note 

that it is completely arbitrary which of the 2p orbitals we used in making this hybrid sp orbital. 

Any of the orbitals COULD be used, but by convention we say that the orbital is the pz orbital, 

since the z axis is the bond axis by definition. 

To make our BeH bonds we create two bonding orbitals from the H 1s orbitals and the Be 

sp orbitals.  They are given by 

 ψ = c11sA + c2ψsp(i) 

and  ψ' = c11sB + c2ψsp(ii). 

Since the two bonds are identical except in direction the constants c1 and c2 are the same in both 

wavefunctions.  Once again notice that in this model the core Be 1s orbitals are completely 

uninvolved in the bonding. 

For BH3, experiment shows that there are three equivalent B-H bonds.  We follow the same 

general procedure.  B has the electron configuration 1s2 2s2 2p.  We take the three lowest available 
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orbitals, 2s, 2px and 2pz, and combine them to get three hybrid sp2 orbitals.  The three orbitals are 

given by 

 ψ sp i z= 1
3

2s+ 2
3

2p2 ( )  

ψ sp ii z x= 1
3

2s - 1
6

2p + 1
2

2p2 ( )  

ψ sp iii z x= 1
3

2s - 1
6

2p - 1
2

2p2 ( )  

Note that all three of these orbitals will have probability densities that are 2/3 p and 1/3 s.  They 

are all equivalent and differ only in that they point in different directions.  They all lie within a 

plane and are at an angle of 120° from each other.  As was the case with the BeH2, we make our 

bonds by overlapping B sp2 orbitals with H 1s orbitals. 

A similar procedure is followed for CH4, except here we need four equivalent orbitals.  We 

get these by mixing the 2s and all three 2p orbitals of C to get four sp3 orbitals.  The four sp3 

orbitals are: 

ψ sp i x y z= 1
4

(2s+ 2p + 2p + 2p )3 ( )  

ψ sp ii x y z= 1
4

(2s - 2p - 2p + 2p )3 ( )  

ψ sp iii x y z= 1
4

(2s+ 2p - 2p - 2p )3 ( )  
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ψ sp i x y z= 1
4

(2s - 2 p + 2 p - 2 p )3 ( )v  

These orbitals as you know, form a tetrahedron, with a separation of 109.5°. 

In the molecules NH3, H2O and HCl, the central atoms all have sp3 hybridization.  In each 

of these molecules, the sp3 orbital either forms a bond by overlap with a hydrogen 1s orbital or 

contains a pair of electrons that are not involved in bonding and are called lone pair electrons.  

Experiment has shown that sp3 molecules which contain lone pair electrons do not show bond 

angles of 109.5° as expected from the valence bond method, but have slightly smaller bond angles.  

In NH3, which has one lone pair, the bond angle is 107°, while in H2O with two lone pairs, the 

bond angle is 104°. 

How do we decide what hybridization to use for an atom?  As a general rule, we need 

enough hybrid orbitals to make room for all the bonding electrons and lone pairs which go 

around the atom.  BeH2 had two bonds, so we needed two hybrid orbitals, which means we need 

sp hybridization.  NH3 has three bonds and a lone pair so we need four hybrid orbitals, and sp3 

hybridization.   

What do we do if we want to create a molecule like NF3?  The fluorines could either be 

unhybridized or have sp3 hybridization and still yield the same geometry.  In addition, experiment 

won’t help us distinguish between these two cases, since experiment will show that both give 

incorrect orbital energies.  So what do we do?  Since the physical explanation for hybridization is 

the change in the potential that the electrons feel when atoms come together to make a molecule, 

we would have to assume that F is hybridized as well.  After all, the F electrons are subject to an 

anisotropic potential just as the N atoms are. 

The valence bond method also can handle simple multiple bonded systems.  Consider 
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ethylene.  The formula is H2C=CH2.  Experiment shows that each of the bonds in ethylene is 120° 

apart.  This must mean that the orbitals on the carbon atoms are sp2 orbitals.  Two of the sp2 orbitals 

that are formed on the two carbons are used to make σ bonds with the hydrogen atoms.  The third 

sp2 orbital is used to make the carbon-carbon sigma bond.  This leaves a single unused electron in 

a p orbital on each carbon.  The carbon 2p orbitals containing these unpaired electrons overlap to 

form a new bond that has a nodal surface where the C-C single bond is.  In other words, each C 

atom forms two single σ bonds with H of the form 

 ψCHσ = c11sA + c22sp2 

The 2 C atoms also form a σ bond with each other of the form -  

 ψCCσ = c3(2sp2 + 2sp2) 

Finally the 2 C atoms form the π bond with the two remaining p electrons: 

 ψCCπ =   c4(2pzA + 2pzB). 
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Lecture 31 

Unfortunately, the valence bond method does more poorly with extended π systems like 

benzene or conjugated polyenes. A still simple, but slightly more sophisticated theory of bonding 

is called Hückel Molecular Orbital Theory.  In this method, we use valence bond theory to 

generate the sigma-bonded skeleton of our molecules, and then use a simplified version of 

the molecular orbital theory to account for the bonding due to the extended π system.  

Qualitatively we observe that the extended π bonds in conjugated systems are the result of a 

network of bonds that form between a series of half occupied p orbitals.  Thus we expect that the 

molecular orbitals which describe the π bonding of these molecules will be a series of different 

linear combinations of these p orbitals.  Let’s look at the Hückel treatment of the π system for 

ethylene, 1,3 butadiene, and benzene to see how this method works. 

For ethylene, two p orbitals are involved in our π bond, so a reasonable trial function will 

be 

 ψ = c1φ1 + c2φ2, 

where φ1 and φ2 are 2pz orbitals.  Calculating the variational energy of this trial function leads to 

the secular determinantal equation, 

H ES H ES
H ES H ES

11 11 12 12

21 21 22 22

0
− −
− −

=  

where, as before, the integral Hij is given by  

* ˆ
ij i jH H dϕ ϕ τ= ∫  

and the overlap integral Sij is given by 

*
ij i jS dϕ ϕ τ= ∫  
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So far this is a normal molecular orbital treatment, albeit restricted to the π bonds.  The Hückel 

molecular orbital method adds the following approximations which simplify the secular equation. 

1)  The overlap integrals Sij are set equal to zero unless i = j, when Sii = 1.  This has the 

effect of changing all the terms on the diagonal of the matrix to Hii - E and changing all of the 

terms that are not on the diagonal of the matrix to Hij.  Thus, the first approximation changes our 

determinantal equation to  

H E H
H H E
11 12

21 22

0
−

−
=  

Essentially this approximation amounts to assuming that the overlap integrals Sij are small enough 

that we can ignore them. 

2)  All of the diagonal elements Hii - E are assumed to be have the same value and are given 

the new symbol α.  This is a reasonable approximation since all the orbitals we are putting into 

our matrix are pz orbitals.  It is an approximation because it assumes that the energy of a p orbital 

at the end of a molecule will be the same as the energy of the p orbital in the middle of the molecule, 

even though the environments are different. It also assumes that the p orbital will have the same 

energy no matter which other atoms are bonded to the carbon atom. 

3) The resonance integrals, Hij are set to zero, except for between neighboring atoms.  The 

resonance integrals between these neighboring atoms have the form Hij, where j = i±1.  Examples 

are H32, H23, H12, H43.  The resonance integrals between neighboring atoms are assumed to be 

equal and are all given the symbol β.  It is the values of the integral β which give us the extent of 

stabilization of our bonding orbitals and destabilization of our antibonding orbitals.  Thus, this 

approximation essentially says that the bonding occurs mainly through the interaction 
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between adjacent p orbitals, and that the interactions between the p orbitals on the first and third 

carbons of a long molecule, for example, are negligible. 

The secular equation now becomes 

α β
β α
−

−
=

E
E

0  

The next feature of Hückel theory is that the values of the integrals α and β are not determined 

theoretically, but by fitting the basic results of the theory to experimental results.  Thus, the Hückel 

method is what is known as a semiempirical theory.  Since the integrals α and β are determined 

from experiments, we do not need to know the exact form of the Hamiltonian for the problem, a 

tremendous simplification. 

If we expand out our determinant, the equation that results is  

 (α-E)2 + β2 = 0, 

which yields two different orbital energies, E = α + β, and E = α - β.  When we evaluate the 

coulomb integral, β, we find that it always has a negative value, so the lowest of these two levels 

has energy E = α + β.  In interpreting these energies, it is useful to realize that α is the energy of 

an electron in a nonbonding Hückel MO, so the orbital with energy α + β is a bonding orbital, 

while the orbital with energy α - β is an antibonding orbital.  Each of these orbitals can accept 

up to two electrons, in keeping with the Pauli exclusion principle.  Since there are two electrons 

which are available in ethylene, both go in the orbital with energy α + β, and the total π electron 

energy is 2α + 2β.   

The wavefunctions of the ethylene π molecular orbitals are 
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 ψ 1 = 1
2

(2p + 2p )zA zB  

and  ψ 2 = 1
2

(2p - 2p )zA zB . 

ψ1 has the same shape probability distribution as the pπu bonding orbital that we calculated for 

H2
+, and ψ2 has the same shape probability distribution as the pπg antibonding orbital of H2

+, 

although in both cases the distributions of intensity along the z axis are different. 

Let’s look at the Hückel results for two other molecules of chemical interest.  The first is 

butadiene, which is the smallest conjugated molecule.  Butadiene exists in two configurations, cis 

and trans, but we will simplify by treating it as if it were a simple linear molecule.  As before we 

use the valence bond treatment to obtain the σ bonded skeleton, just as you learned in general 

chemistry and organic chemistry.  In this case, we have four p orbitals that contribute to the π 

bonds, so we will obtain four different π molecular orbitals with four different energies. 

We begin by constructing our secular determinant.  When we have n atoms involved we 

will have an n x n secular determinant.  For this case where we have four atoms involved in the 

bonding we will have a four by four determinant.  The four diagonal elements are all the same, α 

- E.  The elements below and to the side of each of the diagonal elements are β.  Thus our 

determinant for π molecular orbitals of butadiene is 

α β
β α β

β α β
β α

−
−

−
−

=

E
E

E
E

0 0
0

0
0 0

0  

We can simplify the solution of this secular equation by dividing the matrix through by β, and then 
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making the substitution x = (α - E) /β.  This results in the matrix 

x
x

x
x

1
1 1

1 1
1

0=  

If we multiply this out we get  

 x4 - 3x2 + 1 = 0. 

Although this is a quartic equation, it can be solved relatively easily by a second substitution, y = 

x2, which changes the equation to  

 y2 -3y + 1 = 0,  

which can be solved by the quadratic formula to yield the roots 

 y = x = 3 5
2

2 ±  

This in turn yields four roots for x,  

 x = ± 1.61084 

and  x = ± 0.6184. 

Since  x = (α - E) /β, this means that in order of increasing energy, our four molecular orbitals 

have energies, α + 1.6108β, α + .618β, α -.618β, and α - 1.6108 β.  The first two of these levels 

are bonding orbitals and the final two are antibonding orbitals. 
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The molecular orbitals that correspond to these energies have the following appearance.  

The lowest energy molecular orbital is spread 

over all four carbon atoms, with the density 

above and below the plane containing the 

nuclei.  The next molecular orbital has a node 

between the second and third carbons, but has 

its electron density spread between the first and 

second and third and fourth carbons.  The next 

orbital has two nodes, and the highest orbital 

has three. 

If we put two electrons into the first 

orbital, that means we are essentially creating 1/3 of a bond between each of the adjacent carbon 

pairs. Putting two electrons in the second molecular orbital creates 1/2 of a bond between the first 

and second carbons, and 1/2 of a bond between the third and fourth carbons.  If we add these bonds 

together, and include the sigma bond from the 

valence bond skeleton, we get a bond order of 1 

5/6 between C1 and C2, a bond order of 1 1/3 

between C2 and C3, and a bond order of 1 5/6 

between C3 and C4.  This picture differs 

substantially from the standard picture of 

butadiene, where the bond order between C1 and 

C2 is 2, between C2 and C3 is 1 and between C3 and C4 is 2.  Because the π electron density is 
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spread over the whole molecule we say that the bonding is delocalized.   

This delocalization has an effect on the π electron energy of butadiene as well.  We can 

estimate the effect of this delocalization on the π electron energy by comparing the butadiene π 

energy with that of the simpler picture of butadiene π-bonding, which is simply twice the π electron 

energy of ethylene.  To calculate the π electron energy of butadiene we note that our four π 

electrons go into the two bonding orbitals, which means that the total π electron energy of 

butadiene is 2 x (α + 1.618β) + 2 x ( α + .618 β) =  4α + 4.472 β.  Twice the π electron energy of  

ethylene is 4α + 4β, so our delocalization energy, Ebutadiene - 2 Eethylene = .472 β, which for butadiene 

is -35 kJ mol-1.  Again, this extra stability is due to the delocalization of the electrons across the 

entire length of the molecule. 

We can do a similar treatment of benzene.  In this case six p orbitals with six electrons are 

involved in the π system.  The secular determinant is a six by six determinant. [What will the 

elements of the secular determinant be?]  Expansion of this determinant leads to a sixth degree 

polynomial.  The solutions of this polynomial are  

 E1 = α + 2β 

 E2 = E3 = α + β 

 E4 = E5 = α - β 

 E6 = α - 2β. 

The π electrons will go only into molecular orbitals 1, 2, and 3.  Molecular orbital one is completely 

delocalized over the six C atoms, while molecular orbitals 2 and 3 taken together are also 

delocalized over all six atoms.  The net effect is to have a bond order of 1.5 for all bonds in benzene.  

The π electron energy of benzene is 6α + 8β, and using the same type of arguments we used for 
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calculating the delocalization energy of butadiene, we find that the delocalization energy of 

benzene is 2β or -150 k/mol. 
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Lecture 32 

We've now completed our formal treatment of chemical bonding.  However, there are three 

final topics that are important to treat before we finally leave the subject.  These are 

electronegativity, ionic bonding, and hydrogen bonding.  Electronegativity is a useful subject for 

a couple of reasons.  Our discussion of chemical bonding thus far has been limited to covalent 

bonding, in which bonding occurs as a result of two or more atoms sharing electrons.   However, 

we know that in many bonds, electrons are not shared between two atoms. In these cases, an 

electron is transferred from one atom to the other, creating an anion and a cation, which then form 

a bond as a result of their coulomb attraction.  This is called an ionic bond.  It is useful to know 

when a bond is going to be ionic and when it will be covalent.  One of the useful properties of the 

electronegativity is that it allows us to estimate when a bond will be ionic and when it will be 

covalent. 

Another reason that electronegativity is a useful concept is that it also allows us to estimate 

how evenly the electrons in a bond are shared between the two atoms.  Our initial molecular orbital 

treatment was for homonuclear diatomic molecules where both atoms equally share the electrons.  

The case is more complex for heteronuclear diatomic molecules.  We know from general chemistry 

that most often these electrons are not equally shared but that one of the atoms has a larger share 

of the electron density.  The distribution of electron density between the two atoms is correctly 

determined by a full molecular orbital treatment, but as we've already mentioned, for molecules 

with large numbers of electrons or several nuclei, this can take a prohibitive amount of time.  The 

electronegativity is a quick and semiquantitative means of determining whether the electrons in 

the bond will be shared equally, yielding a nonpolar molecule, or unequally, yielding a polar 

molecule.  
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What is electronegativity?  It is simply a measure of the ability of an atom within a 

molecule to attract electrons to itself.  It is to be carefully distinguished from the electron affinity, 

which is the energy released when an electron is added to an isolated atom, and is most clearly 

defined as the negative of the electron attachment energy.  On a qualitative basis, the more similar 

the electronegativities of two atoms in a bond are, the less polar the bond will be.  The more 

different the electronegativities, the more polar the bond will be.  If the difference is large enough, 

the electron will actually transfer and we will have an ionic compound. 

There are two important procedures for calculating electronegativity.  The concept and first 

definition are due to Linus Pauling, who won a Nobel Prize for his contribution to the 

understanding of chemical bonding.  Pauling observed that the bond energy of a molecule A-B, 

E(A-B), is greater than the average of the bond energies of A with itself, E(A-A), and B with 

itself, E(B-B) when the molecule A-B is polar.  In other words for a polar molecule,  

 E(A-B) >  1/2 (E(A-A) + E(B-B)). 

Pauling based his electronegativity scale on this energy difference.  He defined the difference in 

electronegativies of two atoms as 

 ∆electronegativity = .050(
kJ / mol

) ,AB 1/ 2∆  

where ∆AB is the energy difference 

 ∆AB = E(A-B) -  1/2 (E(A-A) + E(B-B)). 

Since this formula only allows us to calculate differences between the electronegativities of two 

compounds, it is necessary to establish some standard atom as a basis of comparison.  Hydrogen 

is a logical choice, since it can attain a noble gas configuration by gaining a single electron or by 

losing a single electron.  As such, Pauling chose it as his standard and assigned it an 
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electronegativity of 2.1.  Again, the larger the electronegativity, the greater the tendency the atom 

has to attract electrons to itself within a bond.   

Remember that Pauling was the main proponent in this country of valence bond theory, 

while Robert Mulliken was the main proponent of molecular orbital theory.  They were great rivals.  

As such it is not surprising that once the idea of electronegativity began to gain currency, Mulliken, 

in a typical scientific spirit of “anything you can do I can do better”, proposed his own 

electronegativity scale.  Mulliken reasoned that since electronegativity is the tendency of an atom 

in a molecule to attract electrons to itself, that it would be well represented by the average between 

the ionization energy, which is the energy necessary to remove an electron, and the electron 

affinity, which is the energy released when an electron is attached to an atom, i.e., 

 electronegativity = 1/2 (Ei + Eea). 

If these energies are expressed in electron volts, the Mulliken scale can be converted to the Pauling 

scale by dividing by 3.1.  It turns out that while the two scales are not identical, they are very close. 

Electronegativities follow periodic trends.  The atom with the highest electronegativity 

is F, with a Pauling electronegativity of 3.98.  The atom with the smallest electronegativity is Fr, 

with an electronegativity of .7.  The electronegativity increases as we go diagonally from the lower 

left of the periodic table to the upper right.  It is, however, not defined for the noble gases.   We 

can understand these periodic trends if we consider the groups and periods separately.   

Electronegativities decrease as we go down a group.  We can understand this because 

the effective nuclear charge that the valence electrons feel is approximately the same as we go 

down a group, but the distance between the electrons and the nucleus increases.  Thus the coulomb 

attraction decreases as we go down the group, and the tendency to attract electrons decreases.   

Electronegativities increase as we go across a period.  Here, the effective nuclear charge 
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increases as we move across the periodic table, and the size of the atom decreases.  Taken together 

these mean a significant increase in the coulomb attraction, and therefore in the attraction of 

electrons by nuclei as we move across the period. 

As I said, we can use differences in electronegativity to discuss the distribution of 

electrons in a bond.  The observations should be familiar.  In a given bond, the atom with a larger 

electronegativity will have a larger share of the electron density, and will be partially negative, 

while the atom with lower electronegativity will have a small positive charge, resulting in a dipole 

moment for the bond. We can also use the electronegativity to crudely describe the nature of the 

bonding as covalent or ionic.  The general rule of thumb is that if the difference in 

electronegativities is > 1.7 that the bonding is more than 50% ionic, while if the difference of 

electronegativities is < 1.7 that the bonding is more than 50% covalent. 

As we said earlier, if the difference in electronegativities is large enough then an ionic bond 

is formed.  The attractive force in an ionic bond is the very strong coulomb attraction between the 

two ions, given by  

 E(R)= Q Q
4 R

1 2

πε 0

. 

However, this can't be the only force involved in ionic bonding, or the two atoms would collapse 

into each other.  The other force is a coulomb repulsion that becomes very strong when the electron 

clouds of the two ions get close enough to touch.  At this point the repulsion energy increases very 

rapidly.  The bond length re of the ionic bond is the point at which the attraction and repulsion are 

exactly balanced. 

At this point, the stabilization of the molecule relative to the separated ions is fairly well 

described by the coulomb energy alone, i.e., the energy of the reaction 
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 M+ + X- → MX 

is given by  

 E(R)= Q Q
4 Re

1 2

0πε
. 

However this energy is not the bond energy.  The bond energy is the energy which is released from 

the reaction 

 M + X → MX. 

The difference between the dissociation to ions and the dissociation to neutral atoms is the pair of 

reactions, 

  M → M+ + e-,  

the ionization of M, and  

 X + e- → X-, 

the attachment of an electron to X.  The energy of this first process is Ei, the ionization energy and 

energy of the second is Eea, the electron affinity.  Thus the bond energy is given by  

 E(R) - Ei(M) + Eea(X). 

For NaCl this gives a value of Do within 5% of the best experimental value.  Note however, that 

this D0 is for a diatomic molecule with ionic bonding.  Ionic compounds typically are not found as 

diatomic molecules, but as arrangements of ions in extended 3 dimensional lattices.  The energy 

of formation of such an ionic crystal is not simply the sum of the diatomic bonding energies for 

the atoms that form it, but represents more complex ionic interactions.  However, the detailed 

consideration of ionic solids is outside of the subject matter for this class. 

In addition to predicting ionic bonding, electronegativity tells us when covalent bonds 

will be polar.  The consequences of polar bonds are hydrogen bonding and other types of 
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intermolecular forces.  We consider H-bonding separately because it is intermediate in strength 

between a bond and other intermolecular forces like dipole-dipole forces, and because unlike other 

intermolecular forces, cannot be explained as a purely electrostatic phenomenon.  H-bonding is 

ubiquitous - it is implicated in phenomena as varied as the three dimensional structure of proteins, 

the high boiling point of water and the presence of gas phase molecular complexes.  Substances 

that have hydrogen atoms bonded to small strongly electronegative atoms are capable of 

forming hydrogen bonds.  Examples of classic hydrogen bonding molecules are water, all 

alcohols, and HCl.  The hydrogen bond forms because the bond polarity of these types of molecules 

results in a small excess of charge on the electronegative atom, and a small deficiency of charge 

on the H atom.  The negative charge on the electronegative atom of one molecule is attracted to 

the positive H on the other.  The strength of the hydrogen bond is due in part to the large polarity 

of the bond, but also due in part to the smallness of the H atom and the electronegative atom, which 

allows a closer approach of the partially charged species, and thus a stronger coulomb interaction. 

One way to view hydrogen bonding is to look at it as a type of Lewis acid-base chemistry 

with a partial bond formed.  Remember that a Lewis base is defined as an electron donor, while a 

Lewis acid is an electron acceptor.  While H bonding species are usually species with full octets, 

the bond polarity results in an electron deficiency on the H atom which results in a capability to 

accept a small amount of electron density, while some of the excess electron density necessary for 

the electronegative atom to act as a Lewis base is also a result of the bond polarity.  Thus we can 

view hydrogen-bonded complexes as weak Lewis acid-base adducts. 

H bonding is just the strongest of the intermolecular forces between neutral 

molecules.  These intermolecular forces result in an attraction between molecules, and yield 

equilibrium geometries with a dissociation energy Do and an equilibrium bond length re.  However, 
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because hydrogen bonding interactions are weak, the bond lengths are typically long, greater than 

3 or 4 angstroms, and the dissociation energies are typically weaker than the average energy of a 

molecule at room temperature, E = 3/2RT = 3.7 kJ/mol.  These intermolecular forces have an 

attractive and a repulsive component.   

There are three main types of attractive forces between neutral molecules.  These are 

dipole-dipole forces, dipole-induced dipole forces and van der Waals (dispersion) forces.  The 

potential energy function for two dipolar molecules averaged over all possible relative orientations 

is given by 

< >V(R) = - 2
3kT

(
4

1
Rdd

A Bµ µ
πε 0

2
6)  

where k is Boltzmann's constant, µA and µB are the dipole moments of the two species and R is the 

separation between the two molecules.  For non-hydrogen-bonding neutral molecules, this is the 

strongest type of intermolecular force. 

The next strongest force is the dipole - induced dipole force, which is generated when the 

electric field of a polar molecule either attracts or repels the electrons in another molecule, thereby 

distorting the electron distribution and inducing a dipole moment.  The magnitude of the dipole-

induced dipole force depends on a property of molecules called the polarizability, α, which 

represents the response of the molecule's charge distribution to an external electric field and is 

always less than 1.  The induced dipole moment for a molecule A in the presence of a dipole B is 

given by αAµB, and the potential energy for the dipole induced dipole interaction is  

< >V(R) = - +
(4 Rid
B A A Bα µ α µ
πε

2 2

0
2 6)

 

Once again, this term is substantially weaker than the dipole dipole interaction. 
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The weakest of the three forces is variously called the van der Waals force, the London 

force or the dispersion force.  This weakest of attractive forces has made itself known even in 

the entertainment industry where it was immortalized by the Clash's hit CD, "London Calling".  It 

is the interaction between two induced dipoles, and is a result of the fact that molecular electron 

distributions are in a continuous state of flux and are only uniform on average.  This force has an 

extremely complicated potential function, but like the other two forces, is proportional to 1/R6.   

It is important to realize that a pair of interacting dipoles will experience all three of 

these forces.  A dipolar molecule interacting with a nonpolar molecule will experience only 

the dipole-induced dipole, and London forces, and two nonpolar molecules will experience 

only the London force. 

The repulsive part of the intermolecular forces comes from the contact between the electron 

clouds of the interacting molecules, and is much more complicated to treat than the attractive 

forces.  However, an important experimental observation is that when the distance between the 

molecules is shorter than the experimental bond length, the potential energy of repulsion increases 

very rapidly. 

The observations regarding attractive forces and repulsive forces were combined to create 

an approximate intermolecular potential called the Lennard-Jones 6-12 potential.  The form of 

this potential energy function is 

V = 4 [(
r

-(
r

]ε σ σ) )12 6  

Here ε is the energy necessary to separate the two molecules, while σ is the separation of the 

molecules at which the attraction and repulsion yield the equilibrium bond length.  The term raised 

to the sixth power represents the attractive forces, while the term raised to the 12th power 
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represents the repulsive force.  Note that the attractive term was chosen to match the observed r 

dependence of attractive interactions, while the repulsive term satisfies the requirement of a rapid 

rise at short r.  σ and ε are always experimentally determined. ε is typically small, on the order of  

<3 kJ/mol, while σ is usually long compared to covalent or ionic bonds. 


